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The failure of the [4 + 21 cycloaddition of dimethyl- 
maleic anhydride with furan was a result of both electronic 
and steric hindrance of the methyl group. Another reason 
for the failure of the cycloaddition was due to the poor 
Diels-Alder rectivity of furan.' I 

Recently the more reactive diene isobenzofuran was 
found to react quantitatively with dimethylmaleic anhy- 
dride (1) in reluxing xylene to give the cycloaddition 
product, benzocantharidine.2 Another reactive furan, 
3,4-dimethoxyfuran (2), undergoes cycloaddition with 1 
under high pressure (22 kbar) a t  room temperature. The 
reaction, however, did not proceed a t  lower pressure, e.g., 
10 kbar.3 We have also demonstrated that  when the 
methyl groups of 1 were replaced by chlorines, it  reacted 
with furan under 5 kbar of pressure to yield a cycloadduct." 
This result showed that the electron-withdrawing chlorine 
groups increased its dienophilicity, and the application of 
high pressure overcomes the steric hindrance. The reaction 
first yields the 1:l cycloadduct, which is still reactive as 
a dienophile, and adds a second molecule of furan giving 
the 1:2 addition product. Thus, we expect that a reactive 
diene (2) and dichloromaleic anhydride (3) may react un- 
der more moderate conditions to yield a stable 1:l  cyclo- 
addition product. When 2 and 3 were refluxed in toluene, 

a polymerization was initiated with the elimination of 
hydrogen chloride and a black solid was produced. The 
cycloaddition reaction of 2 and 3 in T H F  solution was 
found to  proceed under 10 kbar a t  room temperature. 
(The reaction failed a t  lower pressure, 5-6 kbar.) The 
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product 5 was isolated in 67 70 yield after chromatographic 
purification. The compound 5 probably arose via 1:l ad- 
dition (4) followed by dehydrochlorination and rear- 
rangement. 
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The reaction of furan with diphenylcyclopropenone (6) 
has been reported to be unsuccessful, yielding only the 
dimer of 6.5 We have found that  the cycloaddition re- 
action does not occur even under high pressure (- 10 kbar). 
The more reactive furan 2, however, underwent the cy- 
cloaddition with 6 on refluxing in toluene to give 2,3-di- 
methoxy-5,6-diphenylphenol (8) in 24 % yield. The com- 
pound 8 may be obtained via the decarbonylation and 
rearrangement of the initially formed adduct (7). 
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Similarly, methylphenylcyclopropenone (9) reacts with 

2 in refluxing toluene producing 2,3-dimethoxy-5- 
methyl-6-phenylphenol (10) in 9% yield along with the 
dimer (1 1)6 of 9. 
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The yields of these phenols 8 and 10 were greatly im- 
proved when the reactions were performed a t  high pres- 
sure, 8-10 kbar. The yields were increased to 51% and 
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68%, respectively. These results demonstrate also that 
the use of high pressure is a very valuable tool for synthetic 
organic chemistry. 

Experimental Section 
General Aspects. Melting points were taken on a Yanagimob 

micro hotstage apparatus and are uncorrected. Infrared spectra 
on KBr pellets of solids were measured on a JASCO IR-G 
spectrophotometer. 'H NMR and 13C NMR spectra of CDC13 
solutions with Me4Si as an internal standard were recorded on 
a Hitachi R-40 (90 MHz) spectrometer and a JEOL FX-9OQ 
spectrometer, respectively. High pressure experiments were 
performed in Teflon-brand capsules, reported in our previous 
paper? Mass spectra were obtained at the Rockefeller University 
mass spectrometric lab, by using chemical ionization. 

Materials. Dichloromaleic anhydride and furan were pur- 
chased from Aldrich and purified by sublimation or distillation. 
Dichloromaleic anhydride melts at 122 "C. 3,4-Dimethoxyfuran 
and diphenyl- and methylphenylcyclopropenone' were prepared 
according to the literature. 

Reaction of Dimethoxyfuran (2) with Dichloromaleic 
Anhydride (3). A solution of 2 (0.19 g, 1.5 mmol) and 3 (0.25 
g, 1.5 mmol) in THF was compressed in a high pressure vessel 
for 27 h at room temperature. After evaporation of solvent, the 
residue was chromatographed on silica gel using hexanelethyl 
acetate (95/5 and then 50/50 by v/v) as eluent. The yellow 
fractions gave the crude product 5 (0.26 g, 67%). Recrystallization 
from dichloromethane gave an analytically pure sample: mp 
131-132 "C; IR (KBr) 1765,1815,1855 (C=O), 2925,3120 (CH30) 
cm-'; 'H NMR (90 MHz) 3.81 (s, 3 H, 4.04 (8 ,  3 H), 7.35 (9, 1 H); 
13C NMR (90 MHz) 58.7 (q, CH30), 60.7 (9, CH,O), 125.2 (s, C-l), 
128.7 (9, C-6), 130.0 (d, C-5),  145.1 (s, C-3,4), 159.2 (s, C=O), 160.4 
(9, C=O). Anal. Calcd. for C1&06Cl: C, 46.44; H, 2.73; C1, 13.71. 
Found: C, 46.39, H, 2.67, C1, 13.87. 
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Reaction of 2 with Diphenylcyclopropenone (6). A mixture 
of 1 (0.11 g, 0.86 mmol) and 6 (0.16 g, 0.78 mmol) in toluene (5 
mL) was refluxed for 44 h. After evaporation of the solvent, the 
residue was chromtographed in Florisil successively using hex- 
ane-benzene, benzene, and benzene-methyl acetate as the eluents. 
The product 8 was recrystallized from hexane: yield, 0.058 g 
(24%); mp 155-156 O C ;  IR (KBr) 2950,3000 (OCH,), 3400 (OH) 
cm-';'H NMR 3.59, 3.87 (s, 3 H X 2, OCH,), 4.82 (br s, 1 H, OH), 
6.87 (s, 1 H, H-4), 7.26-7.63 (m, 10 H, CsH5 X 2); 13C NMR 56.6, 
60.7 (q, OCH,), 114.4 (d, C-4), 123-147 (complex, other aromatic 
carbons). Anal. Calcd for C20H1803: C, 78.40; H, 5.93. Found: 
C, 78.38; H, 5.96. 

Reaction of 2 with Methylphenylcyclopropenone (9). A 
mixture of 9 (0.29 g, 2 mmol) and 2 (0.26 g, 2 mmol) in toluene 
(5 mL) was refluxed for 46 h and worked up as described above, 
producing 2,3-dimethoxy-5-methy1-6-phenylphenol (10) (40 mg, 
9%) and the dimer 11 (0.11 g, 10%). 10: oil; IR (neat) 2940 
(OCH3), 3580 (OH) em-'; 'H NMR 2.22 (s, 3 H, CH,), 3.77 and 
3.80 (each s, 3 H X 2, OCH, X 2), 4.90 (s, 1 H, OH), 6.60 (5, 1 H, 
3-H), 7.25-7.45 (m, 5 H, CsH,), 13C NMR 9.2 (q, CH,), 56.4,60.42 
(each q, OCH,), 111.3 (d, C-4), 119.3 (s, C-5), 122.5 (s, C-6), 127.7, 
129.1, 129.2 (each d, CH= of Ph), 137.5 (s, C of I'Ph), 144.9,146.6, 
147.8 (each s, C-1,2,3). Anal. Calcd for Cl5Hl6O3: c, 73.75; H, 
6.60. Found: C, 73.69; H, 6.61 11: mp 178-179 "C; ( l k 6  mp 169 
"C); IR (KBR) 1725 (C=O) cm-'; 'H NMR 2.04 m and 2.25 (each 

and 10.0 (each q, CH, X 2), 73.3 (s, 4a-C), 117-158 (complex, 
aromatic and olefinic carbons). Anal. Calcd for CzOH160.5 C, 
83.31; H, 5.59. Found: C, 83.28; H, 5.43. 

High Pressure Reaction of 6 (and 9) with 2. A solution of 
6 (or 9) (2 mmol) and 2 (2 mmol) in dichloromethane (8 mL) was 
reacted at 8 kabr and 55 "C for 48 h. After cooling and release 
of pressure, the mixture was worked up as described above and 
8 and 10 were isolated in 51% and 69% yield, respectively. 

S, 3 H X 2, CH,), 7.05-7.36 (m, 10 H, CsH5 X 2); 13C NMR 9.8 
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Endo-Selective Insertion by Norcaranylidene 
Carbenoid into the a-C-H Bond of Alkoxides: 
Evidence of a Hydride Abstraction-Recombination 
Mechanism 

Summary: A hydride abstraction-recombination mecha- 
nism in the insertion of the a-C-H bond of alkoxides by 
norcaranylidene carbenoid is proposed on the basis of the 
preferential endo stereoselectivity at the carbenic carbon 
of the insertion products. 

Sir: While studies on the stereochemistry of the C-H 
insertion by carbenes have provided valuable information 
on the mechanism of the reaction,' the major concern has 
been focused on the stereochemistry of substrates, Le., 
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whether the insertion proceeds with retention or racemi- 
zation of configuration. On the other hand, the stereo- 
chemistry on the carbenic carbon has received little at- 
tention.2 Herein, we wish to  report evidence of the hy- 
dride abstraction-recombination mechanism3 in the in- 
sertion by norcaranylidene ca,rbenoid4 into the a-C-H bond 
of alkoxides. Our major concern in the present study is 
the stereochemistry of the carbenic carbon associated with 
the endo and exo selectivity of the insertion products. 
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